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DIRECTIONAL DEVIATION NORMS AND SURFACE AREA

L. V. TORALBALLA

Introduction

One of the earlier attempts at giving a general definition of surface area

was made by J. A. Serret[l] in 1868. Following the quite adequate definition

of arc length, he defined the area of a surface to be the L.U.B. of the areas

of polyhedra inscribed in it. The inadequacy of this definition was made

apparent in 1882 by H. A. Schwarz [2] when he showed that by this defini
tion even such a simple and smooth surface as a circular cylinder has no

area. This discovery prompted a vigorous search for a definition of surface

area that would have adequate generality. In 1902 Henri Lebesgue [3]

proposed that surface area be defined as the G.L.B. of the set of the limit
inferiors of the sequences of areas of polyhedral surfaces which converge
uniformly to the given surface. An enormous literature [see 4, 5, 6, 7] has

grown using Lebesgue's definition as a basis.

However, some mathematicians came to feel that while Lebesgue's
definition is quite general, it lacks geometric simplicity. They initiated a

return to a presentation by means of inscribed triangular polyhedra. The
idea is to limit the class of the inscribed triangular polyhedra in such a

manner as to preclude the occurrence of the Schwarz phenomenon. Thus,
M. W. H. Young [B], for continuously differentiate surfaces, requires that
the angles of the triangles on the xy plane have an upper bound less than n.
Rademacher [9] for surfaces satisfying the Lipschitz condition, requires that
these angles have a positive lower bound. Kempisty [7] limits consideration
to right triangles having the ratio of the base to the altitude between 1/2
and 2. In a certain sense these latter definitions are ad hoc and thus seem

to lack naturalness.
The present note is restricted to continuously differentiable surfaces.

However, it makes use of a simple geometric idea which, as far as this writer
knows, has not been considered in the literature.

If a polyhedron, inscribed on a continuously differentiate surface is

to be thought of, in a good geometric sense, as an approximation to the



surface, one might expect that the direction of the normal to each face of
the polyhedron should not differ very much from the directions of the nor
mals to the part of the surface which is subtended by the particular face.

One sees that the polyhedra constructed by Schwarz do not have this

property; that in fact, as the norms of the polyhedra converge to zero, the

angle between the normal to each face and the normals to the surface sub
tended by the particular face approaches tt/2. It is this pleating effect that
produces a set of polyhedral areas that is unbounded.

The present paper is an attempt to take into consideration the angular
or directional deviation of the faces of the polyhedra.

We shall here confine ourselves to non-paramatric surfaces. Such a

surface is the locus in E3E
3 of an equation z= f(x, y) where the domain is

the closure of a bounded, open, and connected set Ein E 2
, and /is contin

upus on E.

The basis

We shall make use of the following properties of E3E
3

1) Let U and Vbe any two vectors in E2E
2 such that | cos (U,V)\ <k,

where 0 < k < 1. Then for every g > 0 there exists ô > 0 such that if U1

and V1 are any two vectors such that sin (C/ l5 C/") |< and | sin (F1? F) |<Ô
then | sin (C/ x V, Ut x Fx ) | < e.

Let E be an open, bounded, and connected set on the xy plane. Let

f(x, y) be defined and continuously differentiable on E. Then

2) The directional derivative of / is uniformly continuous on E,
i.e. for every e > 0 there exists 5 > 0 such that if (x 1 ,y 1 ) and (x2 ,y2 )

are in E and 0 < p ((xl9yj, (x2 ,y2 )) < S then | DXi>yi;X2>y2 /(x^yj
~DXuyi . X2iyJ(x2 ,y2)\<E. Here p ((x 1? y x\ (x2 , y2)) is the distance

between {xu y x ) and (x2 ,y2 ). DXID

Xl , yi ;x«,y2 (*i> s tne directional derivative

of/at (jcl5Ji) in the direction of the vector from (xv y x ) to (x2 , y2).

The directional derivative is uniformly Lipschitzian over E.

3) There exist positive numbers k and 8, k< 1 such that if P, P l9 and
P2P

2 are any three distinct points of E such that

a) pfrPjKd
b) p (P, P2 ) <5 and

c) cos (PP I9 PP2 ) = 0, then

I cos (QQ U QQ2) |<k, where Q =f(P), Q t =/(Px) and Q2Q 2 =/(P2).



4) Let Pi and P2P
2 be any two distinct points on E, Q 1 = /(Pi), and

Q2Q 2 = f(P2 ). Let P± P2P
2 denote the closed interval determined by-P 1 and P2P

2

and Q t Q2Q 2 the closed interval determined by Q 1 and g 2 . Let the curve

C= /(Pi P2 ). Then there exists a point PonC such that the tangent line

to Cat Pis parallel to g x Q2 .

5) With the notation as in 4), let the deviation D (P 1 P2 ) denote the

L.U.B. of the acute angles cp between the surface chord g x
Q2Q 2 and any

tangent line to C. Then for every e > 0 there exists S > 0 such that if
o<p (P l5 P2 ) <(5 then D {P 1 P2 ) <e.

6) For every e > 0 there exists 3 > 0 such that if P± and P2P
2 are any

two distinct points of E such that p (P 1? P2 ) <5 then <e, where \j/ is the

acute angle between the surface normals at /(Pi) and at/(P2 ).

We need to give some preliminary definitions.

Definitions

We shall call a surface S = f(E) simple when the boundary of £ is a

simple closed polygon. We shall first be concerned only with simple
surfaces.

A polyhedron II is said to be inscribed on S when all the vertices of U
are in S and the orthogonal projection, Proj 11, on the xy plane is E. By
the norm of a polyhedron we shall mean the greatest of the diameters of
the faces (triangles) of 11.

Let II be inscribed on S and let A be a face of 77. By the deviation D {A)
of A we shall mean the L.U.B. of the acute angles between the normal
to A. and the surface normal at a point of the surface subtended by A. By
the deviation norm of U we shall mean the greatest of the deviations of its
faces.

We shall consider sequences of polyhedra which are inscribed on 5.
A sequence {77l9J72 , ... }of such polyhedra is said to be a proper sequence
of polyhedra inscribed on S when the corresponding sequence of norms
{ Nl9 N2 , ... } converges to zero and the corresponding sequence {<£ 1? (j> 2 , ...}
of deviation norms also converges to zero.

We now give our basic definition of surface area:
Let E be a bounded set on the xy plane whose boundary is a simple

closed polygon. Let/(x ? j) be defined and continuously differentiate on
E. If to every proper sequence of polyhedra inscribed on S = / (E) the
corresponding sequence of polyhedral areas {A l9 A2 , ...} converges, then



then we say that S is quadrable anf that the necessarily unique limit of
{A±, A 2 , ...} is the area of the surface S.

Theorem 1.

Let E be a bounded set on the xy plane whose boundary is a simple
closed polygon. Let/(x, y) be defined and continuously differentiable on E.
Then there exist a proper sequence {/7 1 ,772 , ...]? of polyhedra inscribed
on S.

Proof:
For every positive number r there exists a decomposition of E as the

union of closed right triangles whose diameters are all less than r. The
vertices of these right triangles determine a finite set of points in S whose

projection is precisely the set of these vertices. This set of points in S

determines a triangular polyhedron which is inscribed on S. We shall show
that by making the norm of the decomposition of E sufficiently small we

can make the acute angle between the normal to each polyhedral face and
the surface normai at any point of the portion of S which is subtended by
the particular face to be arbitrarily small. Let s > 0 be given.

By property 3) there exist positive real numbers k < 1 and ô
x such that

if PP\P2 is a right triangle on E (P being the right angled vertex) with?>- ?*-

diameter < ô l9 then | cos (QQi, QQ 2 ) |<k. Let the décomposition of E

by right triangles be of norm less than ôl.ô

1 .

By property 1) there exists a positive real number 9 such that if
| sin (QQd QQ\) I<o and | sin (QQ2 , QQi) \<o, then the acute angle

between QQ ± x QQ2 and gg/ x QQ2
' is less than s/3.

By properties 4) and 5) there exists a positive real number ô2ô

2 such that
if PPiP2 is a right triangle on E with diameter less than ô 2 , then the angle

between the chord QQ X and the tangent line at Qto the curve on S sub
tented by QQi is less than 0. Similarly, the angle between the chord QQ2

and the tangent line at Qto the curve on S subtended by QQ2 is less than 6.

It follows that the angle between the normal to the polyhedral face QQ 1
Q2Q 2

and the surface normal at Q is less than s j 3.

By property 6) there exists a positive real number <535

3 such that if the

diameter of the triangle PPX
P2P

2 is less than S
3 , then the angle between the

surface normals at any two points of the portion of S which is subtended

by the polyhedral face QQ 1
Q2Q 2 is less than £/3.

Let sbe the least of 8198

l9
52,5

2 , and <53.5

3 . If Dis any decomposition of E int
closed right triangles of norm less than 3, then if QQ t Q2Q 2 is any of the



polyhedral faces, the L.U.B. of the angles between the normal to QQ X
Q2Q

2

and the surface normals at any point of the portion of the surface subtended

by QQi Q2Q 2 is less than s.

Thus corresponding to a sequence {s1?s 1? s2 , ... } converging to zero, there

exists a sequence of polyhedra with corresponding sequence of norms

converging to zero and also with corresponding sequence of deviation

norms converging to zero.

Theorem 2.

Let E be an open set on the xy plane whose boundary is a simple closed

polygon. Let/(x, y) be defined and continuously differentiate on E. Then

for every proper sequence of polyhedra inscribed on S the corresponding

sequence {Al,A 1 ,A 2 ,...} of polyhedral areas converges and moreover it
converges to the double integral

Proof:
For each n, the projection of the faces of 17

n constitute a décomposition
Dn of E as the union of a finite set of closed triangles. Let the triangle
4» = QQi Qi be the face of Un and let A mn = Proj g^ g2g 2 = PP t P2 .

Let mn be the acute angle between the normals to Â
mn and to Âmn . Let Àmn

and Âmn dénote the areas of A mn a^d mlI , respectively. Then A mn -
sec wn and the area A n of Un

is mn sec j8mil .

m

Let Pmn
be any point in A

mn and let Qmn be the point of S whose projec
tion is Pmn . Let 6

mn denote the acute angle between the surface normal at
Qmn and the z-axis.

Let {n l ,II2,n3 , ..} be any proper sequence of polyhedra inscribed
on S. We shall associate to {77 1? il2 , i73 , ...} certain related sequences.

The sequence {<j> l9 <j> 2 ,
03,0

3 , ... } is the corresponding sequence of devia
tion norms. The sequence {Z l9 Z2 ,Z3 , ..} is the corresponding sequence



of polyhedral areas. In
=?= ZÂmn sec f}mn . In the fourth séquence In = ZÂmn

7ôz\2 TfhV
sec 9

mn . Hère sec 9
mn is the value of / 1 + ? + ? at some point

V \dxj \dyj
of A'

mn . Thus the séquence {z\, Z2 ,
Z'3 , ... } is a séquence of Riemann sums

/ (dz\2 fdz\2
_of the function / 1 + ?1 +(? on £ with corresponding séquence of

V \dxj Vy_l
/ (dz\ 2 (dz\ 2

norms converging to zéro. Since / 1 +(? +(? is continuous on E,
V \dxj \dyj

this converges to the double intégral CD = /1/ 1 +(?) +( ?) d(x,y) .

J Jv \dxj \dyj
E

We will now consider the sequence [Z l9 Z2 , Z3 , ...}.
Let 9 dénote the acute angle between the surface normal at a point

r fdz\2 fdzv
of and the z-axis. Sec 9= / 1 + ? + ? is bounded on E.

V \dxj \dyj
Thus there exists an acute angle 9* > 0 such that 9 < 9* for all points
of E (i.e. for all points of S). Since sec 9 is uniformly continuous on the
closed interval [0, 9*], for every rj > 0 there exists t > 0 such that if
0 < 6X6

X < 0*
9 0< 929

2 < o*, and \0 1 -9 2 \<t 9
then | sec 0 x - sec 929

2 | < r\.

We now compare the corresponding sequences

Let s > 0 be given. Take ? , where A = area of E. There exists t > 0
2A

8
such that if |Qt ?92 \ <t, then | sec 919

1 ? sec 929

2 | <?. Since {0150 l5

$2, 03, ???} converges to zéro, there exists a positive integer Nl such that
if n> Ni then (f)

n <t. Thus if «> Nx , then

Since {lm Z2 , Z 3 , ... } converges to [J, there exists a positive integer N2 .

s
such that if n> N2 , then \Zn ?$ < - . Let Nbe the larger of Nt and N2 .

lfn>N then
2



Thus {119l l9 ZZ
2 >

???} converges to $.
Thus far we have defined the concept of area only for surfaces which are

not only continuously differentiate but are also simple. We now remove
this latter restriction.

Let E be any quadrable (i.e. Jordan measurable) open set on the xy
plane having for boundary a simple closed curve. Let / be defined and

continuously differentiate on E. Let P be any subset of E whose boundary
is a simple closed polygon. The surface S

p = f(P) is quadrable. Denote its

area by Ap . Consider now the set of all such areas Ap . Since sec 9is bounded

on E, for every polygonal subset PofE,Ap AM, where Ais the area of E

and M is an upper bound of | sec 0 | on E. We now define the area of
S =f(E) as the L.U.B. of the set [all Ap].

Theorem 3.

Let £bea quadrable open set on the xy plane having for boundary a

simple closed curve. Let / be defined and continuously differentiate on E.

Then the area of S = f (E) is given by

Proof:
Let B denote the L.U.B. of the set [all A

p], For each P, Ap <$ and hence

B < [p. Suppose now that it ? B = 2s > 0.

Let {D t , D2 , D 3 , ...} be any séquence of triangular " décompositions "
of E with corresponding séquence of norms converging to zéro. Hère we
permit the triangles to abut beyond the boundary of E. On each Dn form

a Riemann sum ofF (x, y) = I+(?j +(?Jin the following manner :

If a triangle does not abut beyond the boundary of E, then take for the
point P any point of the triangle. However, if a triangle does abut beyond
the boundary of E, let its contribution to the Riemann sum be zéro.
Now every séquence {Sl9 S2 , S3 , ...} of such Riemann sums converges and

moreover, it converges to [J. Since {Sl9 S2 , S3 , ...} converges to [J, there

exists a positive integer N such that if n > N then | [J - Sn
\ < - .

On Dn , the set of the triangles which do not abut beyond the boundaries
of E constitutes a polygonal subset of E. Call it Pn . There exists a triangular



décomposition D n of Pn
such that if S'

n
is a Riemann sum of/ (x, y) on Dn ,

s , e
then | APn - Sn

\ < and |(]-SB |<-. It foliows that APn >B. This contra-

diction shows that B = ij.
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